Autogon Docs
  • Change Log
  • Get Started
  • Libraries
  • Slicing & Indexing
  • Autogon Engine (Studio)
    • Data Processing
      • Data Input (DP_1)
      • Automated Data Processing (DP_ADP)
      • Missing Data (DP_2)
      • Data Encoding (DP_3)
      • Data Split (DP_4)
      • Feature Scaling (DP_5)
      • Drop Columns (DP_6)
      • Time Stepper (DP_7)
      • Parse Datetime (DP_PDT)
      • Reorder Columns (DP_ROC)
      • Feature Sampling (DP_FSP)
      • Reshape Array (DP_RSH)
      • Column Astype (DP_ASP)
      • Show Duplicates (DP_SDC)
      • Drop Duplicates (DP_DRD)
      • Scalar to Ndarray (DP_STN)
      • Image to Ndarray (DP_ITN)
      • Dataset Info (DP_INF)
      • Dataset Correlations (DP_CRR)
      • Dataset Description (DP_DSC)
      • Dataset Datatypes (DP_DTY)
      • Dataset Uniques (DP_UNQ)
      • Dataset Stats Counts (DP_STC)
      • Principal Component Analysis (DP_PCA)
      • Text Vectorizer (DP_VEC)
      • Resampler (DP_RES)
    • Data Visualization
      • Scatter Plots (DP_SCP)
      • Ordinary Plots (DP_ORD)
      • Compare Scatter Plots (DP_CSP)
      • Pie Plots (DP_PIE)
      • Heatmap Plots (DP_HMP)
    • Machine Learning
      • Simple Linear Regression (ML_R_1)
      • Multiple Linear Regression (ML_R_2)
      • Polynomial Linear Regression (ML_R_3)
      • Support Vector Regression (ML_R_4)
      • Decision Tree Regression (ML_R_5)
      • Random Forest Regression (ML_R_6)
      • Logistic Regression (ML_CN_1)
      • K-Nearest Neighbors - KNN (ML_CN_2)
      • Support Vector Machine (ML_CN_3)
      • Kernel SVM (ML_CN_4)
      • Naive Bayes (ML_CN_5)
      • Decision Tree Classification (ML_CN_6)
      • Random Forest Classification (ML_CN_7)
      • Hierarchical Clustering (ML_CG_1)
      • K-Means Clustering (ML_CG_2)
      • XGBoost (MS_XGBOOST)
      • Grid Search (ML_GRID)
      • Shap Explain (ML_SHAP)
      • Isolation Forest (ML_ISF)
      • (ML_DBS)
    • Automated Machine Learning
      • AutoRegression (AUTO_R_1)
      • AutoClassification (AUTO_CN_1)
      • AutoRegression II (AUTO_R_2)
    • Deep Learning
      • Artificial Neural Network (DL_ANN)
      • Self Organizing Maps (DL_SOM)
      • Restricted Boltzmann Machine (DL_RBM)
    • Automated Deep Learning
      • Auto Image Classification (A_DL_IMC)
      • Auto Image Regression (A_DL_IMR)
      • Auto Text Classification (A_DL_TXC)
      • Auto Text Regression (A_DL_TXR)
      • Auto Structured Data Classification (A_DL_SDC)
      • Auto Structured Data Regression (A_DL_SDR)
      • General AutoDL Blocks (A_DL_ALL)
  • LabelCraft
    • Images, Annotations and Augmentation
    • Import and Export
    • Model Training and Prediction
  • Production APIs
    • Production Pipelines
  • Autogon Qore
    • Vision AI
    • Natural Language AI
      • Text Classification (Deprecated)
      • Text Summary (Deprecated)
      • Ask Your Data
      • Generate Synthetic Data
      • Speech To Text
      • Text To Speech
      • Sentiment Analyzer (Deprecated)
      • Conversation with Chatbot Agent
      • Conversational Interaction with GPT-4
      • Essay Marker
      • Resume Ranker
      • Translator
    • Voice Cloning
      • Create a Voice
      • Get Voices
      • Text-To-Speech
  • Other APIs
    • Project
      • List all projects
      • Create a New Project
      • Get Project Details
      • Delete a Project
    • Dataset
      • List all datasets
      • Create a Dataset
      • Get a Dataset
      • Updating a dataset
      • Delete a Dataset
      • Dataset Connection
      • Visualize Dataset
Powered by GitBook
On this page

Was this helpful?

Slicing & Indexing

Learn how to select subsets of data on Autogon using slice notation. This concise syntax allows you to select elements based on various criteria, including specific indices, labels, and ranges.

Slicing Notation

Our slice notation is a way of selecting subsets of a specified dataset using a concise, Pythonic syntax. This notation can be used to select rows and columns based on various criteria.

Selecting Rows

To select rows using slice notation, you can use the following syntax:

start:end

Here, start and end are the starting and ending indices of the slice, respectively. Note that the slice is inclusive of the starting index and exclusive of the ending index.

For example, to select rows 1 to 3 of a dataset, you can use the following slice:

1:4

This selects rows 1, 2, and 3 (because the slice is inclusive of the starting index 1 and exclusive of the ending index 4).

You can also use negative indices to select rows from the end of the data. For example, to select the last 3 rows, you can use the following slice:

-3:

This selects the last 3 rows of the dataset (because the slice starts at index -3 and continues to the end of the dataset).

Selecting Columns

To select columns using slice notation, you can use the following syntax:

:, start:end

Here, start and end are the starting and ending column labels of the slice, respectively. Note that the slice is inclusive of the starting label and exclusive of the ending label.

For example, to select columns "A" through "C" of your dataset, you can use the following slice:

:, "A":"D"

This selects columns "A", "B", and "C" (because the slice is inclusive of the starting label "A" and exclusive of the ending label "D").

You can also use negative indices to select columns from the end of the dataset. For example, to select all columns except for the last column of a dataset, you can use the following slice:

:, :-1

This selects all columns up to, but not including, the last column of the dataset.

Selecting Rows and Columns

To select both rows and columns using slice notation, you can combine the row and column slices using the following syntax:

start_row:end_row, start_col:end_col

For example, to select rows 1 to 3 and columns "A" through "C" of your dataset, you can use the following slice:

1:4, "A":"C"

This selects rows 1, 2, and 3 and columns "A", "B", and "C" (because the slices are inclusive of the starting indices and exclusive of the ending indices).

PreviousLibrariesNextData Processing

Last updated 1 year ago

Was this helpful?