Autogon Docs
  • Change Log
  • Get Started
  • Libraries
  • Slicing & Indexing
  • Autogon Engine (Studio)
    • Data Processing
      • Data Input (DP_1)
      • Automated Data Processing (DP_ADP)
      • Missing Data (DP_2)
      • Data Encoding (DP_3)
      • Data Split (DP_4)
      • Feature Scaling (DP_5)
      • Drop Columns (DP_6)
      • Time Stepper (DP_7)
      • Parse Datetime (DP_PDT)
      • Reorder Columns (DP_ROC)
      • Feature Sampling (DP_FSP)
      • Reshape Array (DP_RSH)
      • Column Astype (DP_ASP)
      • Show Duplicates (DP_SDC)
      • Drop Duplicates (DP_DRD)
      • Scalar to Ndarray (DP_STN)
      • Image to Ndarray (DP_ITN)
      • Dataset Info (DP_INF)
      • Dataset Correlations (DP_CRR)
      • Dataset Description (DP_DSC)
      • Dataset Datatypes (DP_DTY)
      • Dataset Uniques (DP_UNQ)
      • Dataset Stats Counts (DP_STC)
      • Principal Component Analysis (DP_PCA)
      • Text Vectorizer (DP_VEC)
      • Resampler (DP_RES)
    • Data Visualization
      • Scatter Plots (DP_SCP)
      • Ordinary Plots (DP_ORD)
      • Compare Scatter Plots (DP_CSP)
      • Pie Plots (DP_PIE)
      • Heatmap Plots (DP_HMP)
    • Machine Learning
      • Simple Linear Regression (ML_R_1)
      • Multiple Linear Regression (ML_R_2)
      • Polynomial Linear Regression (ML_R_3)
      • Support Vector Regression (ML_R_4)
      • Decision Tree Regression (ML_R_5)
      • Random Forest Regression (ML_R_6)
      • Logistic Regression (ML_CN_1)
      • K-Nearest Neighbors - KNN (ML_CN_2)
      • Support Vector Machine (ML_CN_3)
      • Kernel SVM (ML_CN_4)
      • Naive Bayes (ML_CN_5)
      • Decision Tree Classification (ML_CN_6)
      • Random Forest Classification (ML_CN_7)
      • Hierarchical Clustering (ML_CG_1)
      • K-Means Clustering (ML_CG_2)
      • XGBoost (MS_XGBOOST)
      • Grid Search (ML_GRID)
      • Shap Explain (ML_SHAP)
      • Isolation Forest (ML_ISF)
      • (ML_DBS)
    • Automated Machine Learning
      • AutoRegression (AUTO_R_1)
      • AutoClassification (AUTO_CN_1)
      • AutoRegression II (AUTO_R_2)
    • Deep Learning
      • Artificial Neural Network (DL_ANN)
      • Self Organizing Maps (DL_SOM)
      • Restricted Boltzmann Machine (DL_RBM)
    • Automated Deep Learning
      • Auto Image Classification (A_DL_IMC)
      • Auto Image Regression (A_DL_IMR)
      • Auto Text Classification (A_DL_TXC)
      • Auto Text Regression (A_DL_TXR)
      • Auto Structured Data Classification (A_DL_SDC)
      • Auto Structured Data Regression (A_DL_SDR)
      • General AutoDL Blocks (A_DL_ALL)
  • LabelCraft
    • Images, Annotations and Augmentation
    • Import and Export
    • Model Training and Prediction
  • Production APIs
    • Production Pipelines
  • Autogon Qore
    • Vision AI
    • Natural Language AI
      • Text Classification (Deprecated)
      • Text Summary (Deprecated)
      • Ask Your Data
      • Generate Synthetic Data
      • Speech To Text
      • Text To Speech
      • Sentiment Analyzer (Deprecated)
      • Conversation with Chatbot Agent
      • Conversational Interaction with GPT-4
      • Essay Marker
      • Resume Ranker
      • Translator
    • Voice Cloning
      • Create a Voice
      • Get Voices
      • Text-To-Speech
  • Other APIs
    • Project
      • List all projects
      • Create a New Project
      • Get Project Details
      • Delete a Project
    • Dataset
      • List all datasets
      • Create a Dataset
      • Get a Dataset
      • Updating a dataset
      • Delete a Dataset
      • Dataset Connection
      • Visualize Dataset
Powered by GitBook
On this page
  • Sample Request
  • Data input

Was this helpful?

  1. Autogon Engine (Studio)
  2. Data Processing

Data Input (DP_1)

Specify the data sources, this functionality can take database connection, CSV, JSON or ZIP files

NOTE: If you're using a database connection, create a separate user with appropriate permissions, before uploading data from a database.

Sample Request

{
    "project_id": 1,
    "parent_id": 0,
    "block_id": 1,
    "function_code": "DP_1",
    "args": {
        "dburl": "https://raw.githubusercontent.com/autogonai/autogon-public-datasets/main/mobile_price_prediction.csv",
        "dbservertype": "",
        "file_type": "csv",
        "database_name": "",
        "dbuser": "",
        "dbpassword": "",
        "query": "",
    }
}

Data input

POST https://api.autogon.ai/api/v1/engine/start

Loads data into a project.

Request Body

Name
Type
Description

dburl*

String

database host or Data Source URL

file_type*

String

File type for data input (db for database, csv for CSV, json for JSON for source files.

dbservertype

String

database server type (required with file_type: db)

database_name

String

Name of the database (required with file_type: db)

dbuser

String

Username for connecting with database (required with file_type: db)

dbpassword

String

Password for connecting with the database (required with file_type: db)

query

String

query to fetch data from the database (required with file_type: db)

project_id*

int

current project ID

block_id*

int

current block ID

function_code*

String

block's function code

args*

object

block arguments

parent_id

int

previous block ID

method*

String

Method of importation.

Options:

'img_class_folder': import as an image classification problem with folder names as image class labels 'img_csv': import as an image regression or classification problem with image paths listed in a colmn of a csv and target variables on other column(s)

(required with file_type : zip)

images_path

String

Path to images from zip file's root (required with file_type: zip)

class_mode

String

Method of importing target labels or variables Options:

'binary': The inputter will return binary labels indicating the class membership of each sample 'categorical': The inputter will return one-hot encoded labels, where each class is represented by a binary vector with a single 1 and 0s elsewhere

'sparse': Instead of one-hot encoded labels for a multi-classifcation problem, the inputter will return integer labels for each class

'input': The inputter will return the input images as both the input and output.

'raw': The inputter will return the raw data gotten for the y_column

target_size*

array

Image size in pixels (Length, Width) (required with file_type: zip)

csv_path*

String

Path to CSV from zip file's root (required with file_type: zip and method: img_csv)

image_files_column*

String

Column name of column containing the list of image file names (images within folders aren't allowed)

(required with file_type: zip and method: img_csv)

y_columns

array

Column names of columns containing target variable(s). Leave empty to include all other columns

(required with file_type: zip and method: img_csv)

{
    "status": "true",
    "message": {
        "id": 1,
        "project": 2,
        "block_id": 1,
        "parent_id": 0,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": ""
    }
}
// Some code
await client.data_input(1, 0, 1, {
    dburl: "https://raw.githubusercontent.com/autogonai/autogon-public-datasets/main/mobile_price_prediction.csv" ,
    file_type: "csv"
})

Good to know: Unlike other block requests, the Data Input block isn't permitted to have parent blocks, hence its null value.

PreviousData ProcessingNextAutomated Data Processing (DP_ADP)

Last updated 1 year ago

Was this helpful?