Autogon Docs
  • Change Log
  • Get Started
  • Libraries
  • Slicing & Indexing
  • Autogon Engine (Studio)
    • Data Processing
      • Data Input (DP_1)
      • Automated Data Processing (DP_ADP)
      • Missing Data (DP_2)
      • Data Encoding (DP_3)
      • Data Split (DP_4)
      • Feature Scaling (DP_5)
      • Drop Columns (DP_6)
      • Time Stepper (DP_7)
      • Parse Datetime (DP_PDT)
      • Reorder Columns (DP_ROC)
      • Feature Sampling (DP_FSP)
      • Reshape Array (DP_RSH)
      • Column Astype (DP_ASP)
      • Show Duplicates (DP_SDC)
      • Drop Duplicates (DP_DRD)
      • Scalar to Ndarray (DP_STN)
      • Image to Ndarray (DP_ITN)
      • Dataset Info (DP_INF)
      • Dataset Correlations (DP_CRR)
      • Dataset Description (DP_DSC)
      • Dataset Datatypes (DP_DTY)
      • Dataset Uniques (DP_UNQ)
      • Dataset Stats Counts (DP_STC)
      • Principal Component Analysis (DP_PCA)
      • Text Vectorizer (DP_VEC)
      • Resampler (DP_RES)
    • Data Visualization
      • Scatter Plots (DP_SCP)
      • Ordinary Plots (DP_ORD)
      • Compare Scatter Plots (DP_CSP)
      • Pie Plots (DP_PIE)
      • Heatmap Plots (DP_HMP)
    • Machine Learning
      • Simple Linear Regression (ML_R_1)
      • Multiple Linear Regression (ML_R_2)
      • Polynomial Linear Regression (ML_R_3)
      • Support Vector Regression (ML_R_4)
      • Decision Tree Regression (ML_R_5)
      • Random Forest Regression (ML_R_6)
      • Logistic Regression (ML_CN_1)
      • K-Nearest Neighbors - KNN (ML_CN_2)
      • Support Vector Machine (ML_CN_3)
      • Kernel SVM (ML_CN_4)
      • Naive Bayes (ML_CN_5)
      • Decision Tree Classification (ML_CN_6)
      • Random Forest Classification (ML_CN_7)
      • Hierarchical Clustering (ML_CG_1)
      • K-Means Clustering (ML_CG_2)
      • XGBoost (MS_XGBOOST)
      • Grid Search (ML_GRID)
      • Shap Explain (ML_SHAP)
      • Isolation Forest (ML_ISF)
      • (ML_DBS)
    • Automated Machine Learning
      • AutoRegression (AUTO_R_1)
      • AutoClassification (AUTO_CN_1)
      • AutoRegression II (AUTO_R_2)
    • Deep Learning
      • Artificial Neural Network (DL_ANN)
      • Self Organizing Maps (DL_SOM)
      • Restricted Boltzmann Machine (DL_RBM)
    • Automated Deep Learning
      • Auto Image Classification (A_DL_IMC)
      • Auto Image Regression (A_DL_IMR)
      • Auto Text Classification (A_DL_TXC)
      • Auto Text Regression (A_DL_TXR)
      • Auto Structured Data Classification (A_DL_SDC)
      • Auto Structured Data Regression (A_DL_SDR)
      • General AutoDL Blocks (A_DL_ALL)
  • LabelCraft
    • Images, Annotations and Augmentation
    • Import and Export
    • Model Training and Prediction
  • Production APIs
    • Production Pipelines
  • Autogon Qore
    • Vision AI
    • Natural Language AI
      • Text Classification (Deprecated)
      • Text Summary (Deprecated)
      • Ask Your Data
      • Generate Synthetic Data
      • Speech To Text
      • Text To Speech
      • Sentiment Analyzer (Deprecated)
      • Conversation with Chatbot Agent
      • Conversational Interaction with GPT-4
      • Essay Marker
      • Resume Ranker
      • Translator
    • Voice Cloning
      • Create a Voice
      • Get Voices
      • Text-To-Speech
  • Other APIs
    • Project
      • List all projects
      • Create a New Project
      • Get Project Details
      • Delete a Project
    • Dataset
      • List all datasets
      • Create a Dataset
      • Get a Dataset
      • Updating a dataset
      • Delete a Dataset
      • Dataset Connection
      • Visualize Dataset
Powered by GitBook
On this page
  • Sample Request
  • Missing Data
  • Encode categorical values

Was this helpful?

  1. Autogon Engine (Studio)
  2. Data Processing

Feature Scaling (DP_5)

This functionality normalizes the range of values for different features in the dataset

This process is very important because many machine learning algorithms use the Euclidean distance between two points in their computations, and if the ranges of the features are vastly different, then the algorithm will be sensitive to the feature with the larger range, and may produce unexpected results.

Sample Request

This request scales the feature sets defined in the range of columns for training and testing.

{
    "project_id": 1,
    "parent_id": 4,
    "block_id": 5,
    "function_code": "DP_5",
    "args": {
        "dataset": true,
        "xtrain": true,
        "xtest": true,
        "x": true,
        "ytrain": true,
        "ytest": true,
        "y": true,
        "scaler": "maxabs",
        "boundariestoscale": ":, 2:",
        "save_name": "testweights",
        "load_name": "testweights"
    }
}

Missing Data

Encode categorical values

POST https://autogon.ai/api/v1/engine/start

Encodes categorical data on specific columns with specified boundaries

Request Body

Name
Type
Description

project_id*

int

current project ID

parent_id*

int

parent block ID

block_id*

int

current block ID

function_code*

String

block's function code

encode*

boolean

specify if variable is encoded

args

object

block arguments

remainder*

applied method to none specified columns; drop drops the unspecified columns for encoding, passthrough ignores unspecified columns

index*

int

column index to apply encoding technique

scaler

String

Type of scaler to use: 'minmax' : transforms data to a 0-1 range.

'standard' : transforms data to have zero mean and unit variance.

'robust' : scaling technique that is less sensitive to outliers in the data.

'maxabs' : scaling technique that scales the data by dividing each feature by its maximum absolute value, preserving the sign of the values while normalizing them.

save_name

name to save processing models with.

load_name

String

name to load processing models with. Used to switch to loading mode

{
    "status": "true",
    "message": {
        "id": 3,
        "project": 1,
        "block_id": 3,
        "parent_id": 2,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": ""
    }
}
// Some code
// Some code
PreviousData Split (DP_4)NextDrop Columns (DP_6)

Last updated 1 year ago

Was this helpful?