Support Vector Regression (ML_R_4)

This function can be used for solving both linear and non-linear problems.

It is based on the concept of support vectors, which are the data points that are closest to the decision boundary, or the line that separates the data into different classes. SVR algorithm aims to find the best line that maximizes the margin between the support vectors and the decision boundary, this line is known as the support vector.

This function aims to find the best line that maximizes the margin between the support vectors and the decision boundary, this line is known as the support vector. It can also be used with kernel functions to find the best decision boundary in non-linear regression problems.

It is a powerful algorithm that is able to handle high dimensional and non-linear data, making it suitable for various regression problems.

Sample Request

Build a multiple linear regression model named, "SimpleModel"

{
    "project_id": 1,
    "parent_id": 7,
    "block_id": 8,
    "function_code": "ML_R_4",
    "args": {
        "model_name": "SimpleModel",
        "kernel": "rbf"
    }
}

Building a Support Vector Regression model

Support Vector Regression

POST https://autogon.ai/api/v1/engine/start

Request Body

NameTypeDescription

project_id*

int

The id of the current project

block_id*

int

The id of the current block

function_code*

string

The function code for current block

parent_id*

int

The id of the previous block

args*

object

Block arguments

model_name*

String

Name of the model to be used for prediction.

kernel

String

Specifies the kernel type to be used in the algorithm (defaults to "rbf").

{
    "status": "true",
    "message": {
        "id": 8,
        "project": 1,
        "block_id": 8,
        "parent_id": 7,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"SimpleModel\": {\"function_code\": \"ML_R_3\", \"model_url\": ""}}"
    }
}
// Some code

Sample Request

Make predictions with the pre-built model passing an optional test data.

{
    "project_id": 1,
    "parent_id": 8,
    "block_id": 9,
    "function_code": "ML_R_4_P",
    "args": {
        "model_name": "SimpleModel",
        "test_data": ""
    }
}

Predicting with Support Vector Regression

Support Vector Regression Predict

POST https://autogon.ai/api/v1/engine/start

Request Body

NameTypeDescription

model_name*

String

Name of previously trained model to be used for prediction

test_data

String

Input data for prediction. Defaults to x_train_url in StateManagment

project_id*

int

ID of the current project

block_id*

int

ID of the current block

parent_id*

int

ID of the previous block

function_code*

String

Function code for the current block

{
    "status": "true",
    "message": {
        "id": 9,
        "project": 1,
        "block_id": 9,
        "parent_id": 8,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"y_pred_url\": ""}"
    }
}
// Some code

Last updated