Autogon Docs
  • Change Log
  • Get Started
  • Libraries
  • Slicing & Indexing
  • Autogon Engine (Studio)
    • Data Processing
      • Data Input (DP_1)
      • Automated Data Processing (DP_ADP)
      • Missing Data (DP_2)
      • Data Encoding (DP_3)
      • Data Split (DP_4)
      • Feature Scaling (DP_5)
      • Drop Columns (DP_6)
      • Time Stepper (DP_7)
      • Parse Datetime (DP_PDT)
      • Reorder Columns (DP_ROC)
      • Feature Sampling (DP_FSP)
      • Reshape Array (DP_RSH)
      • Column Astype (DP_ASP)
      • Show Duplicates (DP_SDC)
      • Drop Duplicates (DP_DRD)
      • Scalar to Ndarray (DP_STN)
      • Image to Ndarray (DP_ITN)
      • Dataset Info (DP_INF)
      • Dataset Correlations (DP_CRR)
      • Dataset Description (DP_DSC)
      • Dataset Datatypes (DP_DTY)
      • Dataset Uniques (DP_UNQ)
      • Dataset Stats Counts (DP_STC)
      • Principal Component Analysis (DP_PCA)
      • Text Vectorizer (DP_VEC)
      • Resampler (DP_RES)
    • Data Visualization
      • Scatter Plots (DP_SCP)
      • Ordinary Plots (DP_ORD)
      • Compare Scatter Plots (DP_CSP)
      • Pie Plots (DP_PIE)
      • Heatmap Plots (DP_HMP)
    • Machine Learning
      • Simple Linear Regression (ML_R_1)
      • Multiple Linear Regression (ML_R_2)
      • Polynomial Linear Regression (ML_R_3)
      • Support Vector Regression (ML_R_4)
      • Decision Tree Regression (ML_R_5)
      • Random Forest Regression (ML_R_6)
      • Logistic Regression (ML_CN_1)
      • K-Nearest Neighbors - KNN (ML_CN_2)
      • Support Vector Machine (ML_CN_3)
      • Kernel SVM (ML_CN_4)
      • Naive Bayes (ML_CN_5)
      • Decision Tree Classification (ML_CN_6)
      • Random Forest Classification (ML_CN_7)
      • Hierarchical Clustering (ML_CG_1)
      • K-Means Clustering (ML_CG_2)
      • XGBoost (MS_XGBOOST)
      • Grid Search (ML_GRID)
      • Shap Explain (ML_SHAP)
      • Isolation Forest (ML_ISF)
      • (ML_DBS)
    • Automated Machine Learning
      • AutoRegression (AUTO_R_1)
      • AutoClassification (AUTO_CN_1)
      • AutoRegression II (AUTO_R_2)
    • Deep Learning
      • Artificial Neural Network (DL_ANN)
      • Self Organizing Maps (DL_SOM)
      • Restricted Boltzmann Machine (DL_RBM)
    • Automated Deep Learning
      • Auto Image Classification (A_DL_IMC)
      • Auto Image Regression (A_DL_IMR)
      • Auto Text Classification (A_DL_TXC)
      • Auto Text Regression (A_DL_TXR)
      • Auto Structured Data Classification (A_DL_SDC)
      • Auto Structured Data Regression (A_DL_SDR)
      • General AutoDL Blocks (A_DL_ALL)
  • LabelCraft
    • Images, Annotations and Augmentation
    • Import and Export
    • Model Training and Prediction
  • Production APIs
    • Production Pipelines
  • Autogon Qore
    • Vision AI
    • Natural Language AI
      • Text Classification (Deprecated)
      • Text Summary (Deprecated)
      • Ask Your Data
      • Generate Synthetic Data
      • Speech To Text
      • Text To Speech
      • Sentiment Analyzer (Deprecated)
      • Conversation with Chatbot Agent
      • Conversational Interaction with GPT-4
      • Essay Marker
      • Resume Ranker
      • Translator
    • Voice Cloning
      • Create a Voice
      • Get Voices
      • Text-To-Speech
  • Other APIs
    • Project
      • List all projects
      • Create a New Project
      • Get Project Details
      • Delete a Project
    • Dataset
      • List all datasets
      • Create a Dataset
      • Get a Dataset
      • Updating a dataset
      • Delete a Dataset
      • Dataset Connection
      • Visualize Dataset
Powered by GitBook
On this page
  • Sample Request
  • Sample Request
  • Building a K-Means Clustering model
  • K-Means Clustering
  • Sample Request
  • Predicting with K-Means Clustering
  • K-Means Clustering Predict

Was this helpful?

  1. Autogon Engine (Studio)
  2. Machine Learning

K-Means Clustering (ML_CG_2)

This function groups similar data points into K clusters by iteratively assigning each data point to the nearest center and updating the cluster centers based on the mean of the assigned data points.

K-Means Clustering is a machine learning algorithm used for grouping similar data points into K clusters. It randomly selects K cluster centers and assigns each data point to the nearest center based on a distance metric. It then updates the cluster centers based on the mean of the assigned data points, and repeats the assignment and update steps until convergence.

The algorithm can converge to a local minimum, so it is often run multiple times with different initial cluster centers to improve the chances of finding the optimal solution.

Sample Request

Find the optimal number of clusters

{
    "project_id": 12,
    "parent_id": 2,
    "block_id": 3,
    "function_code": "ML_CG_2_F",
    "args": {
        "n_clusters": 11,
        "init": "k-means++",
        "random_state": 42
    }
}

POST https://autogon.ai/api/v1/engine/start

Request Body

Name
Type
Description

project_id*

int

The id of the current project

parent_id*

int

The id of the previous block

block_id*

int

The id of the current block

function_code*

string

The function code of the current block

n_clusters*

int

numbers of iterations to make

init*

string

initialization method to use

random_state

String

control algorithm randomness

// Some code
const project_id = 1
const parent_id = 7
const block_id = 8


kmeansClusteringFindClusters   = await client.kmeans_clustering_find_clusters(project_id, parent_id, block_id, {
    n_clusters: 11,
    init: "k-means++",
    random_state: 42
});

Sample Request

Build a K-Means Clustering model named, "ClusterModel"

{
    "project_id": 1,
    "parent_id": 8,
    "block_id": 9,
    "function_code": "ML_CG_2",
    "args": {
        "model_name": "ClusterModel",
        "n_clusters": 11,
        "init": "k-means++",
        "random_state": 42
    }
}

Building a K-Means Clustering model

K-Means Clustering

POST https://autogon.ai/api/v1/engine/start

Request Body

Name
Type
Description

project_id*

int

The id of the current project

block_id*

int

The id of the current block

function_code*

string

The function code for current block

parent_id*

int

The id of the previous block

args*

object

Block arguments

model_name*

String

Name of the model to be used for prediction.

{
    "status": "true",
    "message": {
        "id": 8,
        "project": 1,
        "block_id": 8,
        "parent_id": 7,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"ClusterModel\": {\"function_code\": \"ML_R_3\", \"model_url\": ""}}"
    }
}
// Some code
const project_id = 1
const parent_id = 7
const block_id = 8

kmeansClustering = await client.kmeans_clustering(project_id, parent_id, block_id, {
    model_name: "ClassicModel",
    n_clusters: 5,
    affinity: "euclidean",
    linkage: "ward"
});

Sample Request

Make predictions with the pre-built model passing an optional test data.

{
    "project_id": 1,
    "parent_id": 9,
    "block_id": 10,
    "function_code": "ML_CG_2_P",
    "args": {
        "model_name": "ClusterModel",
        "test_data": ""
    }
}

Predicting with K-Means Clustering

K-Means Clustering Predict

POST https://autogon.ai/api/v1/engine/start

Request Body

Name
Type
Description

model_name*

String

Name of previously trained model to be used for prediction

test_data

String

Input data for prediction. Defaults to x_train_url in StateManagment

project_id*

int

ID of the current project

block_id*

int

ID of the current block

parent_id*

int

ID of the previous block

function_code*

String

Function code for the current block

{
    "status": "true",
    "message": {
        "id": 9,
        "project": 1,
        "block_id": 9,
        "parent_id": 8,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"y_pred_url\": ""}"
    }
}
// Some code
const project_id = 1
const parent_id = 7
const block_id = 8

kmeansClusteringPredict = await client.kmeans_clustering_predict(project_id, parent_id, block_id, {
    model_name: "SimpleModel",
    test_data: ""
});
PreviousHierarchical Clustering (ML_CG_1)NextXGBoost (MS_XGBOOST)

Last updated 2 years ago

Was this helpful?