K-Means Clustering (ML_CG_2)

This function groups similar data points into K clusters by iteratively assigning each data point to the nearest center and updating the cluster centers based on the mean of the assigned data points.

K-Means Clustering is a machine learning algorithm used for grouping similar data points into K clusters. It randomly selects K cluster centers and assigns each data point to the nearest center based on a distance metric. It then updates the cluster centers based on the mean of the assigned data points, and repeats the assignment and update steps until convergence.

The algorithm can converge to a local minimum, so it is often run multiple times with different initial cluster centers to improve the chances of finding the optimal solution.

Sample Request

Find the optimal number of clusters

{
    "project_id": 12,
    "parent_id": 2,
    "block_id": 3,
    "function_code": "ML_CG_2_F",
    "args": {
        "n_clusters": 11,
        "init": "k-means++",
        "random_state": 42
    }
}

POST https://autogon.ai/api/v1/engine/start

Request Body

Name
Type
Description

project_id*

int

The id of the current project

parent_id*

int

The id of the previous block

block_id*

int

The id of the current block

function_code*

string

The function code of the current block

n_clusters*

int

numbers of iterations to make

init*

string

initialization method to use

random_state

String

control algorithm randomness

// Some code

Sample Request

Build a K-Means Clustering model named, "ClusterModel"

{
    "project_id": 1,
    "parent_id": 8,
    "block_id": 9,
    "function_code": "ML_CG_2",
    "args": {
        "model_name": "ClusterModel",
        "n_clusters": 11,
        "init": "k-means++",
        "random_state": 42
    }
}

Building a K-Means Clustering model

K-Means Clustering

POST https://autogon.ai/api/v1/engine/start

Request Body

Name
Type
Description

project_id*

int

The id of the current project

block_id*

int

The id of the current block

function_code*

string

The function code for current block

parent_id*

int

The id of the previous block

args*

object

Block arguments

model_name*

String

Name of the model to be used for prediction.

{
    "status": "true",
    "message": {
        "id": 8,
        "project": 1,
        "block_id": 8,
        "parent_id": 7,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"ClusterModel\": {\"function_code\": \"ML_R_3\", \"model_url\": ""}}"
    }
}
// Some code

Sample Request

Make predictions with the pre-built model passing an optional test data.

{
    "project_id": 1,
    "parent_id": 9,
    "block_id": 10,
    "function_code": "ML_CG_2_P",
    "args": {
        "model_name": "ClusterModel",
        "test_data": ""
    }
}

Predicting with K-Means Clustering

K-Means Clustering Predict

POST https://autogon.ai/api/v1/engine/start

Request Body

Name
Type
Description

model_name*

String

Name of previously trained model to be used for prediction

test_data

String

Input data for prediction. Defaults to x_train_url in StateManagment

project_id*

int

ID of the current project

block_id*

int

ID of the current block

parent_id*

int

ID of the previous block

function_code*

String

Function code for the current block

{
    "status": "true",
    "message": {
        "id": 9,
        "project": 1,
        "block_id": 9,
        "parent_id": 8,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"y_pred_url\": ""}"
    }
}
// Some code

Last updated