Production Pipelines
Pipelines, for MLOps, efficiently integrate your data with streamlined processing and make inference with your pre-built models.
Generate Dataset From Scalar/Vector Values
Generate dataset API
Path Parameters
Name
Type
Description
"To make an HTTP request in Python, you can use the built-in `requests` module. Here is an example:\n\n```python\nimport requests\n\nresponse = requests.get('https://www.example.com')\nprint(response.text)\n```\n\nThis code sends a GET request to `https://www.example.com` and prints the response content. You can also send other types of requests (POST, PUT, DELETE, etc.) by changing the method in the `requests` function. For example:\n\n```python\nimport requests\n\npayload = {'key1': 'value1', 'key2': 'value2'}\nresponse = requests.post('https://www.example.com/post', data=payload)\nprint(response.text)\n```\n\nThis code sends a POST request to `https://www.example.com/post` with a payload of `{'key1': 'value1', 'key2': 'value2'}` and prints the response content."Make Predictions
Perform quick and fully-managed model inference
Request Body
Name
Type
Description
Last updated