Random Forest Classification (ML_CN_7)

This function combines multiple decision trees and aggregates their results to make predictions.

Random Forest is an ensemble machine learning algorithm that combines multiple decision trees to improve performance and reduce overfitting. It creates a set of decision trees by randomly selecting subsets of the features and data samples, and then aggregates the results of the trees to make predictions.

Sample Request

Build a Random Forest Classification model named, "ClassicModel"

{
    "project_id": 1,
    "parent_id": 7,
    "block_id": 8,
    "function_code": "ML_CN_7",
    "args": {
        "model_name": "ClassicModel",
        "criterion": "gini"
    }
}

Building a Random Forest Classification model

Random Forest Classification

POST https://autogon.ai/api/v1/engine/start

Request Body

{
    "status": "true",
    "message": {
        "id": 8,
        "project": 1,
        "block_id": 8,
        "parent_id": 7,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"ClassicModel\": {\"function_code\": \"ML_R_3\", \"model_url\": ""}}"
    }
}
// Some code

Sample Request

Make predictions with the pre-built model passing an optional test data.

{
    "project_id": 1,
    "parent_id": 8,
    "block_id": 9,
    "function_code": "ML_CN_7_P",
    "args": {
        "model_name": "ClassicModel",
        "test_data": ""
    }
}

Predicting with Random Forest Classification

Random Forest Classification Predict

POST https://autogon.ai/api/v1/engine/start

Request Body

{
    "status": "true",
    "message": {
        "id": 9,
        "project": 1,
        "block_id": 9,
        "parent_id": 8,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"y_pred_url\": ""}"
    }
}
// Some code

Sample Request

Evaluate model metrics

{
    "project_id": 1,
    "parent_id": 8,
    "block_id": 9,
    "function_code": "ML_CN_7_M",
    "args": {
        "model_name": "ClassicModel"
    }
}

Decision Tree Classification Metrics

POST https://autogon.ai/api/v1/engine/start

Request Body

{
    "status": "true",
    "message": {
        "id": 1,
        "project": 12,
        "block_id": 10,
        "parent_id": 11,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{'confusion_matrix': '', 'accuracy': 0.9}"
    }
}
// Some code

Last updated