Principal Component Analysis (DP_PCA)
This function reduces the dimensionality using PCA
Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD
Sample Request
{
"project_id": 41,
"block_id": 10,
"parent_id": 9,
"function_code": "DP_PCA",
"args": {
"n_components": 3,
"dataset": false,
"xtrain": true,
"xtest": true,
"x": true,
"ytrain": false,
"ytest": false,
"y": false
}
}
Parameter Details
Principal Component Analysis
POST
https://autogon.ai/api/v1/engine/start
Request Body
Name
Type
Description
project_id*
int
current project ID
parent_id*
int
parent block ID
block_id*
int
current block ID
function_code*
String
block's function code
args*
object
block arguments
n_components
float
int, float or 'mle'
Number of components to keep. If n_components is not set, all components are kept Defaults to 'null'
dataset/x/y/xtrain/ytrain/xtest/ytest
bool
variables to apply function
{
"status": "true",
"message": {
"id": 3,
"project": 1,
"block_id": 7,
"parent_id": 6,
"dataset_url": "",
"x_value_url": "",
"y_value_url": ""
}
}
// Some code
Last updated
Was this helpful?