Principal Component Analysis (DP_PCA)
This function reduces the dimensionality using PCA
Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD
Sample Request
Parameter Details
Principal Component Analysis
POST
https://autogon.ai/api/v1/engine/start
Request Body
Name | Type | Description |
---|---|---|
project_id* | int | current project ID |
parent_id* | int | parent block ID |
block_id* | int | current block ID |
function_code* | String | block's function code |
args* | object | block arguments |
n_components | float | int, float or 'mle' Number of components to keep. If n_components is not set, all components are kept Defaults to 'null' |
dataset/x/y/xtrain/ytrain/xtest/ytest | bool | variables to apply function |
Last updated