Polynomial Linear Regression (ML_R_3)

This function uses the relationship between variables to find the best non-linear fit through the data points.

It does this by fitting a polynomial equation to the data, rather than a straight line. The degree of the polynomial equation can be adjusted to improve the fit of the model to the data.

This approach can be useful when the relationship between the variables is more complex than a simple linear relationship.

Sample Request

Build a multiple linear regression model named, "PolyModel"

{
    "project_id": 1,
    "parent_id": 7,
    "block_id": 8,
    "function_code": "ML_R_3",
    "args": {
        "model_name": "SimpleModel",
        "degree": 2
    }
}

Building a Polynomial Linear Regression model

Polynomial Linear Regression

POST https://autogon.ai/api/v1/engine/start

Request Body

NameTypeDescription

project_id*

int

The id of the current project

block_id*

int

The id of the current block

function_code*

string

The function code for current block

parent_id*

int

The id of the previous block

args*

object

Block arguments

model_name*

String

Name of the model to be used for prediction.

degree

int

maximum degree of polynomial features (defaults to 2)

{
    "status": "true",
    "message": {
        "id": 8,
        "project": 1,
        "block_id": 8,
        "parent_id": 7,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"SimpleModel\": {\"function_code\": \"ML_R_3\", \"model_url\": ""}}"
    }
}
// Some code

Sample Request

Make predictions with the pre-built model passing an optional test data.

{
    "project_id": 1,
    "parent_id": 8,
    "block_id": 9,
    "function_code": "ML_R_3_P",
    "args": {
        "model_name": "SimpleModel",
        "test_data": ""
    }
}

Predicting with Polynomial Linear Regression

Multiple Linear Regression Predict

POST https://autogon.ai/api/v1/engine/start

Request Body

NameTypeDescription

model_name*

String

Name of previously trained model to be used for prediction

test_data

String

Input data for prediction. Defaults to x_train_url in StateManagment

project_id*

int

ID of the current project

block_id*

int

ID of the current block

parent_id*

int

ID of the previous block

function_code*

String

Function code for the current block

{
    "status": "true",
    "message": {
        "id": 9,
        "project": 1,
        "block_id": 9,
        "parent_id": 8,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"y_pred_url\": ""}"
    }
}
// Some code

Last updated