Kernel SVM (ML_CN_4)

This functionality uses a kernel function to map the input data to a higher-dimensional space, where a linear decision boundary is created based on the support vectors.

Kernel SVM works by finding a line or a hyperplane that separates the data into different classes. However, in cases where the data is not linearly separable, a kernel function is used to transform the data into a higher-dimensional space where it becomes separable.

Kernel SVM is a powerful algorithm that can handle complex and nonlinear data. It is widely used in image recognition, natural language processing, and other fields where the data is not easily separable in a linear fashion.

Sample Request

Build a Kernel SVM model named, "ClassicModel"

{
    "project_id": 1,
    "parent_id": 7,
    "block_id": 8,
    "function_code": "ML_CN_4",
    "args": {
        "model_name": "ClassicModel",
        "kernel": "rbf",
        "random_state": 0
    }
}

Building a Kernel SVM model

Kernel SVM

POST https://autogon.ai/api/v1/engine/start

Request Body

NameTypeDescription

project_id*

int

The id of the current project

block_id*

int

The id of the current block

function_code*

string

The function code for current block

parent_id*

int

The id of the previous block

args*

object

Block arguments

model_name*

String

Name of the model to be used for prediction.

kernel

String

Specifies the kernel type to be used in the algorithm (defaults to "rbf").

random_state

int

Controls the randomness of the estimator (defaults to 0).

{
    "status": "true",
    "message": {
        "id": 8,
        "project": 1,
        "block_id": 8,
        "parent_id": 7,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"ClassicModel\": {\"function_code\": \"ML_R_3\", \"model_url\": ""}}"
    }
}
// Some code

Sample Request

Make predictions with the pre-built model passing an optional test data.

{
    "project_id": 1,
    "parent_id": 8,
    "block_id": 9,
    "function_code": "ML_CN_4_P",
    "args": {
        "model_name": "ClassicModel",
        "test_data": ""
    }
}

Predicting with Kernel SVM

Kernel SVM Predict

POST https://autogon.ai/api/v1/engine/start

Request Body

NameTypeDescription

model_name*

String

Name of previously trained model to be used for prediction

test_data

String

Input data for prediction. Defaults to x_train_url in StateManagment

project_id*

int

ID of the current project

block_id*

int

ID of the current block

parent_id*

int

ID of the previous block

function_code*

String

Function code for the current block

{
    "status": "true",
    "message": {
        "id": 9,
        "project": 1,
        "block_id": 9,
        "parent_id": 8,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{\"y_pred_url\": ""}"
    }
}

Sample Request

Evaluate model metrics

{
    "project_id": 1,
    "parent_id": 8,
    "block_id": 9,
    "function_code": "ML_CN_4_M",
    "args": {
        "model_name": "ClassicModel"
    }
}

Kernel SVM Metrics

POST https://autogon.ai/api/v1/engine/start

Request Body

NameTypeDescription

project_id*

int

ID of the current project

parent_id*

int

ID of the previous block

block_id*

int

ID of the current block

function_code*

String

Function code for the current block

model_name*

String

Name of the pre-trained model to be used for evaluation

{
    "status": "true",
    "message": {
        "id": 1,
        "project": 12,
        "block_id": 10,
        "parent_id": 11,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": "",
        "x_train_url": "",
        "y_train_url": "",
        "x_test_url": "",
        "y_test_url": "",
        "output": "{'confusion_matrix': '', 'accuracy': 0.9}"
    }
}
const project_id = 1
const parent_id = 7
const block_id = 8


kernelSvmMetrics= await client.kernel_svm_metrics(project_id, parent_id, block_id, {
    model_name: "SimpleModel",

});

Last updated