Autogon Docs
  • Change Log
  • Get Started
  • Libraries
  • Slicing & Indexing
  • Autogon Engine (Studio)
    • Data Processing
      • Data Input (DP_1)
      • Automated Data Processing (DP_ADP)
      • Missing Data (DP_2)
      • Data Encoding (DP_3)
      • Data Split (DP_4)
      • Feature Scaling (DP_5)
      • Drop Columns (DP_6)
      • Time Stepper (DP_7)
      • Parse Datetime (DP_PDT)
      • Reorder Columns (DP_ROC)
      • Feature Sampling (DP_FSP)
      • Reshape Array (DP_RSH)
      • Column Astype (DP_ASP)
      • Show Duplicates (DP_SDC)
      • Drop Duplicates (DP_DRD)
      • Scalar to Ndarray (DP_STN)
      • Image to Ndarray (DP_ITN)
      • Dataset Info (DP_INF)
      • Dataset Correlations (DP_CRR)
      • Dataset Description (DP_DSC)
      • Dataset Datatypes (DP_DTY)
      • Dataset Uniques (DP_UNQ)
      • Dataset Stats Counts (DP_STC)
      • Principal Component Analysis (DP_PCA)
      • Text Vectorizer (DP_VEC)
      • Resampler (DP_RES)
    • Data Visualization
      • Scatter Plots (DP_SCP)
      • Ordinary Plots (DP_ORD)
      • Compare Scatter Plots (DP_CSP)
      • Pie Plots (DP_PIE)
      • Heatmap Plots (DP_HMP)
    • Machine Learning
      • Simple Linear Regression (ML_R_1)
      • Multiple Linear Regression (ML_R_2)
      • Polynomial Linear Regression (ML_R_3)
      • Support Vector Regression (ML_R_4)
      • Decision Tree Regression (ML_R_5)
      • Random Forest Regression (ML_R_6)
      • Logistic Regression (ML_CN_1)
      • K-Nearest Neighbors - KNN (ML_CN_2)
      • Support Vector Machine (ML_CN_3)
      • Kernel SVM (ML_CN_4)
      • Naive Bayes (ML_CN_5)
      • Decision Tree Classification (ML_CN_6)
      • Random Forest Classification (ML_CN_7)
      • Hierarchical Clustering (ML_CG_1)
      • K-Means Clustering (ML_CG_2)
      • XGBoost (MS_XGBOOST)
      • Grid Search (ML_GRID)
      • Shap Explain (ML_SHAP)
      • Isolation Forest (ML_ISF)
      • (ML_DBS)
    • Automated Machine Learning
      • AutoRegression (AUTO_R_1)
      • AutoClassification (AUTO_CN_1)
      • AutoRegression II (AUTO_R_2)
    • Deep Learning
      • Artificial Neural Network (DL_ANN)
      • Self Organizing Maps (DL_SOM)
      • Restricted Boltzmann Machine (DL_RBM)
    • Automated Deep Learning
      • Auto Image Classification (A_DL_IMC)
      • Auto Image Regression (A_DL_IMR)
      • Auto Text Classification (A_DL_TXC)
      • Auto Text Regression (A_DL_TXR)
      • Auto Structured Data Classification (A_DL_SDC)
      • Auto Structured Data Regression (A_DL_SDR)
      • General AutoDL Blocks (A_DL_ALL)
  • LabelCraft
    • Images, Annotations and Augmentation
    • Import and Export
    • Model Training and Prediction
  • Production APIs
    • Production Pipelines
  • Autogon Qore
    • Vision AI
    • Natural Language AI
      • Text Classification (Deprecated)
      • Text Summary (Deprecated)
      • Ask Your Data
      • Generate Synthetic Data
      • Speech To Text
      • Text To Speech
      • Sentiment Analyzer (Deprecated)
      • Conversation with Chatbot Agent
      • Conversational Interaction with GPT-4
      • Essay Marker
      • Resume Ranker
      • Translator
    • Voice Cloning
      • Create a Voice
      • Get Voices
      • Text-To-Speech
  • Other APIs
    • Project
      • List all projects
      • Create a New Project
      • Get Project Details
      • Delete a Project
    • Dataset
      • List all datasets
      • Create a Dataset
      • Get a Dataset
      • Updating a dataset
      • Delete a Dataset
      • Dataset Connection
      • Visualize Dataset
Powered by GitBook
On this page
  • Sample Request
  • Parameter Details
  • Compare Scatter Plots

Was this helpful?

  1. Autogon Engine (Studio)
  2. Data Visualization

Compare Scatter Plots (DP_CSP)

This function compares scatter plots for pairs of columns in a given input dataset

Scatter plots are a type of data visualization that display the relationship between two variables. Each point on the plot represents a pair of values for the two variables being compared. Scatter plots are useful for identifying patterns or trends in data, and for detecting outliers or unusual observations.

Sample Request

This request reshapes the passed data to a specified dimension

{
    "project_id": 1,
    "block_id": ,
    "parent_id": 0,
    "function_code": "DP_CSP",
    "args": {
        "avalue": "http://cloud.autogonai.s3.amazonaws.com/1a65c19c-b891-4be3-bbfe-ed5c5ec58207.csv",
        "bvalue": "http://cloud.autogonai.s3.amazonaws.com/143ac49a-7bbc-4224-a58e-d6811930b86b.csv",
        "xvalue": "http://cloud.autogonai.s3.amazonaws.com/143ac49a-7bbc-4224-a58e-d6811930b86b.csv",
        "yvalue": "http://cloud.autogonai.s3.amazonaws.com/1a65c19c-b891-4be3-bbfe-ed5c5ec58207.csv",
        "is_grid": true

    }
}

Parameter Details

Compare Scatter Plots

POST https://autogon.ai/api/v1/engine/start

Request Body

Name
Type
Description

project_id*

int

current project ID

parent_id*

int

parent block ID

block_id*

int

current block ID

function_code*

String

block's function code

xvalue*

String

The input data representing the x-axis values on the first plot. This can be a string representing a URL to a CSV file.

args

object

block arguments

yvalue*

String

The input data representing the y-axis values on the second plot. This can be a string representing a URL to a CSV file.

is_grid

Bool

Whether to enable grid in the scatter plot. Default is False.

avalue

String

The input data representing the x-axis values on the first plot. This can be a string representing a URL to a CSV file.

bvalue

String

The input data representing the y-axis values on the second plot. This can be a string representing a URL to a CSV file.

{
    "status": "true",
    "message": {
        "id": 3,
        "project": 1,
        "block_id": 7,
        "parent_id": 6,
        "dataset_url": "",
        "x_value_url": "",
        "y_value_url": ""
    }
}
// Some code
projectId = 1
parentId = 6
blockId = 7

client.array_reshaping(projectId, parentId, blockId, {
PreviousOrdinary Plots (DP_ORD)NextPie Plots (DP_PIE)

Last updated 1 year ago

Was this helpful?